The Reciprocal Complementary Wiener Number of Graph Operations

نویسندگان

چکیده

The reciprocal complementary Wiener number of a connected graph G is defined as ∑ {x,y}⊆V (G) 1 D+1-−-dG(x,y), where D the diameter and dG(x,y) distance between vertices x y. In this work, we study various operations such join, Cartesian product, composition, strong disjunction, symmetric difference, corona splice link graphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Wiener Polarity Index of some Graph Operations

Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.

متن کامل

Reciprocal Complementary Wiener Numbers of Non-Caterpillars

The reciprocal complementary Wiener number of a connected graph G is defined as ( ) { } ( ) ( ) | ∑ u v V G RCW G d d u v G ⊆ = + − , 1 1 , where ( ) V G is the vertex set. ( ) | d u v G , is the distance between vertices u and v, and d is the diameter of G. A tree is known as a caterpillar if the removal of all pendant vertices makes it as a path. Otherwise, it is called a non-caterpillar. Amo...

متن کامل

reciprocal degree distance of some graph operations

the reciprocal degree distance (rdd)‎, ‎defined for a connected graph $g$ as vertex-degree-weighted sum of the reciprocal distances‎, ‎that is‎, ‎$rdd(g) =sumlimits_{u,vin v(g)}frac{d_g(u)‎ + ‎d_g(v)}{d_g(u,v)}.$ the reciprocal degree distance is a weight version of the harary index‎, ‎just as the degree distance is a weight version of the wiener index‎. ‎in this paper‎, ‎we present exact formu...

متن کامل

the generalized wiener polarity index of some graph operations

let g be a simple connected graph. the generalized polarity wiener index ofg is defined as the number of unordered pairs of vertices of g whosedistance is k. some formulas are obtained for computing the generalizedpolarity wiener index of the cartesian product and the tensor product ofgraphs in this article.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kragujevac journal of mathematics

سال: 2021

ISSN: ['2406-3045', '1450-9628']

DOI: https://doi.org/10.46793/kgjmat2101.139n